Gaussian processes for decision making under uncertainty

Javier González
Amazon Cambridge, UK

Oxford, UK

November 2018
Uncertainty quantification

UQ is the science of quantitative characterization and reduction of uncertainties in both computational and real world applications (Wikipedia).

- how to characterize uncertainty?
- how to reduce and *use* uncertainty?
In essence...

We just need to identify ‘where’ we are ignorant and act on it!
Simulations

Simulators are great but:

- Are often slow and expensive to run.
- Can only simulate just what it has been programmed to simulate.
- Simulators are black boxes hard to interpret.
Basic idea of surrogate modelling/emulation
[O'Hagan 2013; O' Hagan, 2006; Conti and O'Hagan, 2010]

Replace (or complement) the simulator with and emulator.

Emulator: probabilistic model fitted on simulation runs.

- Predictions are inexpensive.
- Predictions come with a level of uncertainty (GP emulators).

An emulator is a 'model of a model'
Need to quantify all sources of uncertainty

UQ deals with the end-to-end study of the impact of all forms of error and uncertainty in the models that we use to analyse or build a system of interest.
Decisions under uncertainty

Statistical inference:

\[\text{model} + \text{data} \rightarrow \text{prediction} \]

- Many ways to do this: we focus on Gaussian processes.
- Semi-mechanistic models are key in practice.
- Machine learning promises automatic decision making.

Decision making:

\[\text{predictions} \rightarrow \text{decisions} \]

- The models we use need to tell us when they don’t know.
- We need calibrated uncertainties in decision making.
Decisions under uncertainty

Inference

- **Things that I know:**
 \[y \]

- **Things that I don’t know:**
 \[y^* \]

- **Description of the world:**
 \[p(y^*, y) \]

- **What I need:**
 \[p(y^* | y) \]

Decisions

- **Actions I can take:**
 \[a \in A \]

- **Reward I gain:**
 \[R(a | y, y^*) \]

- **‘Optimal’ decision:**
 \[a^* = \arg \max_{a \in A} \alpha(a; R, p) \]

Example:

\[\alpha(a; R, p) = \mathbb{E}_p R(a | y, y^*) \]
Decisions under uncertainty

Inference

- Things that I know: \(y \)
- Things that I don’t know: \(y^* \)
- Description of the world: \(p(y^*, y) \)
- What I need: \(p(y^* | y) \)

Decisions

- Actions I can take: \(a \in \mathcal{A} \)
- Reward I gain: \(R(a | y, y^*) \)
- ‘Optimal’ decision:
 \[
 a^* = \arg \max_{a \in \mathcal{A}} \alpha(a; R, p)
 \]
 Example:
 \[
 \alpha(a; R, p) = \mathbb{E}_p R(a | y, y^*)
 \]
Outer loop applications

Situations where a probabilistic model can be used in decision making
Decisions problems associated to outer loop applications

In origin are 'deterministic problems'

- **Optimization:**
 \[x^* = \arg \min_{x} f(x). \]

- **Quadrature:**
 \[Z = \int_{\mathcal{X}} f(x)p(x)dx. \]

- **Active learning/Experimental design.**
 \[\{x_1^*, \ldots, x_n^*\} = \arg \min_{\mathcal{X}^n} \| f - \hat{f}_{\{x_1, \ldots, x_n\}} \|_H. \]

- **Control/ Reinforcement learning.**
 \[\min \mathbb{E} \left[\int_{0}^{T} g(t, X^u_t, u_t)dt \right] + G(X^u_T) \]
Decisions problems associated to outer loop applications

In origin are 'deterministic problems'

▶ Optimization:

\[x^* = \arg \min_{\mathcal{X}} f(x). \]

▶ Quadrature:

\[Z = \int_{\mathcal{X}} f(x)p(x)dx. \]

▶ Active learning/Experimental design.

\[\{x_1^*, \ldots, x_n^*\} = \arg \min_{\mathcal{X}^n} \| f - \hat{f}_{\{x_1, \ldots, x_n\}} \|_H. \]

▶ Control/ Reinforcement learning.

\[\min \mathbb{E} \left[\int_0^T g(t, X_t^u, u_t)dt \right] + G(X_T^u) \]
All these problems can be solved under a common sequential decision making framework:

- Use some form of belief of the environment (model of f).
- Make sequential decisions using some form of reward $\alpha(a; R, p(f))$.
- Decisions influence rewards.
- Described as ‘Exploration/Exploitation’ problems.
Model of f: Gaussian process emulators

[Rasmussen and Williams, 2006]

\[
Y = f(X) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)
\]

\[
f(X) \sim \mathcal{GP}(0, k(X, X'))
\]

- Multivariate Gaussian under linear restrictions.
- Posterior mean and variance have closed form.
- Semi-mechanistic: prior in the covariance function.
Model of f: Deep Gaussian processes

[Damianou and Lawrence, 2013]

- Handle non linearities.
- Uncertainty propagation across complex pipelines.
- Intractable, requires approximations.
Multi-fidelity emulators

- We have access to other lower fidelities that we can sort.
- Costs are also available.
Model of f: Multi-fidelity Gaussian process

Single fidelity vs. multiple fidelities
Emulators with multi-fidelity outputs
[OHagan, 2000], [Perdikaris et al. 2017], [Forrester, 2007]

Linear multi-fidelity:

\[f_i (x) = \rho f_{i-1} (x) + \delta_d (x) \]

- \(f_{d-1} (x) \): low fidelity simulation of the problem of interest.
- \(f_d (x) \): higher fidelity simulation.
- \(\delta_d (x) \): additive difference between the lower and higher fid.

\[f_0 (x) \text{ and } \{ \delta_d (x) \}_{d=1}^{D} \text{ are all Gaussian processes.} \]

Extensions:

\[f_i (x) = \rho(x) f_{i-1} (x) + \delta_i (x) \]

\[f_i (x) = g_i (f_{i-1} (x)) + \delta_i (x), \]
Toy example

[Perdikaris et al. 2017]
Black-box optimization

Consider a ‘well behaved’ function $f : \mathcal{X} \to \mathbb{R}$ where $\mathcal{X} \subseteq \mathbb{R}^D$ is a bounded domain.

$$x_M = \arg \min_{x \in \mathcal{X}} f(x).$$

- f is explicitly unknown and multi-modal.
- Evaluations of f are expensive.

Applications:

- Robotics, control, reinforcement learning.
- Model calibration.
- Compilers, hardware, software, industrial design.
- Intractable likelihoods.
Surrogate models in optimization problems

[Jones et al., 1998]

Build an acquisition function to collect more data.

\[\alpha_{EI}(x; \theta, D) = \int_y \max(0, y_{\text{best}} - y) p(y|x; \theta, D) dy \]

Exploration/Exploitation
Surrogate models in optimization problems

[Jones et al., 1998]

Build an acquisition function to collect more data.

\[
\alpha_{EI}(x; \theta, \mathcal{D}) = \int_y \max(0, y_{\text{best}} - y) p(y|x; \theta, \mathcal{D}) dy
\]

Exploration/Exploitation
Surrogate models in optimization problems
[Jones et al., 1998]

Build an acquisition function to collect more data.

\[\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_y \max(0, y_{\text{best}} - y) p(y|x; \theta, \mathcal{D}) \, dy \]

Exploration/Exploitation
Surrogate models in optimization problems
[Jones et al., 1998]

Build an acquisition function to collect more data.

\[\alpha_{EI}(x; \theta, D) = \int_y \max(0, y_{best} - y) p(y|x; \theta, D) dy \]

Exploration/Exploitation
Surrogate models in optimization problems
[Jones et al., 1998]

Build an acquisition function to collect more data.

\[\alpha_{EI}(\boldsymbol{x}; \theta, \mathcal{D}) = \int_y \max(0, y_{best} - y) p(y|\boldsymbol{x}; \theta, \mathcal{D}) dy \]

Exploration/Exploitation
Surrogate models in optimization problems

[Jones et al., 1998]

Build an acquisition function to collect more data.

\[\alpha_{EI}(x; \theta, D) = \int_y \max(0, y_{\text{best}} - y) p(y|x; \theta, D) dy \]

Exploration/Exploitation
Multi-fidelity experimental design
Recipe to use multi-fidelity to optimize a system

1. Collect a few low fidelity and high fidelity observations.

2. Build a multi-fidelity emulator of the system.

3. Improve the model with more observations: Max. information gain per unit of cost.

4. Optimize the emulator instead of the original system.
Cost per simulation: 1u.

Coste per experiment: 5u.
Example multi-fidelity experimental design
Example multi-fidelity experimental design
Example multi-fidelity experimental design

Experiments and simulations - Joint model

Variance reduction for a new sample
Example multi-fidelity experimental design

Experiments and simulations - Joint model

Variance reduction for a new sample
Example multi-fidelity experimental design

Experiments and simulations - Joint model

$f(x)$

Experiments
f-experiment
Simulations

Variance reduction for a new sample

Var. reduccion experiment
Var. reduccion simulation
Example multi-fidelity experimental design
Example multi-fidelity experimental design
Example multi-fidelity experimental design
Conclusions

- Big room for uncertainty quantification in climate science.

- Semi-mechanistic models + good calibrations of the uncertainty are key to build good decisions systems.

- GPs are a fundamental tool for emulation but there are others.

- Climate sciences is about ‘big data’ but thinking on what we can do with ‘small data’ can help to drive new directions.